Monitoring Data Record

Project Title: <u>I-306 DB (I-85 in Durham)</u> COE Action ID: <u>200020902</u>				
Stream Name: South Ellerbee Creek (Sites 2 & 13) DWQ Number: 001040				
City, County and other Location Information: <u>I-85 from W. of Broad St. to W. of Camden Ave. in</u>				
<u>Durham County</u>				
Date Construction Completed: <u>n/a</u> Monitoring Quarter: (1) of 4				
Ecoregion: 8 digit HUC unit 03020201 USGS Quad Name and Coordinates:				
USGS Quad Name and Coordinates:				
Rosgen Classification:				
Length of Project: 2,684' Urban or Rural: <u>Urban</u> Watershed Size:				
Monitoring DATA collected by: M. Green Date: 2/24/06 & 3/22/06				
Applicant Information:				
Name: NCDOT Roadside Environmental Unit				
Address: 1425 Rock Quarry Rd. Raleigh, NC 27610				
Telephone Number: (919) 861-3772 Email address: mlgreen@dot.state.nc.us				
Consultant Information:				
Name:				
Address:				
Address: Telephone Number: Email address:				
Differ address.				
Project Status: Complete				
Troject Status. Complete				
Monitoring Level required by COE and DWQ (404 permit/ 401 Cert.): Level 1 2 3				
Monitoring Level 1 requires completion of Section 1, Section 2 and Section 3				
Womtorning Level 1 requires completion of Section 1, Section 2 and Section 3				
Permit Conditions : The permittee shall visually monitor the vegetative plantings on all mitigation				
streambanks to access and insure complete stabilization of the mitigation stream segments. This				
monitoring shall include adequate visual monitoring of planted vegetation quarterly for a minimum of				
one year after final planting, and appropriate remedial actions (e.g., replanting, streambank grading,				
ect.). If within any monitoring year, bank stabilization is not acceptable as determined by the Corps of				
Engineers, and remedial action required by the Corps of Engineers is performed, the one year				
monitoring of the affected portions of the stream will begin again.				
Section 1. PHOTO REFERENCE SITES				
(Monitoring at all levels must complete this section)				
(Monitoring at all teres must complete this section)				
Total number of reference photo locations at this site: <u>A total of 29 photos were taken from 15</u>				
photo point locations. The station number given beside each photo point (PP) location is the				
approximate location of the stream relocation and not necessarily where the photo was taken				
along the stream. Dates reference where have been taken at this site: 2/24/06 % 3/22/06				
Dates reference photos have been taken at this site: 2/24/06 & 3/22/06				
-				
Individual from whom additional photos can be obtained (name, address, phone):				
Other Information relative to site photo reference:				

If required to complete Level 1 and Level 2 monitoring <u>only</u> stop here; otherwise, complete section 3.

Section 3. CHANNEL STABILITY

Visual Inspection: The entire stream project as well as each in-stream structure and bank stabilization/revetment structure must be evaluated and problems addressed.

Report on the visual inspection of channel stability. <u>Physical measurements of channel stability/morphology will not be required.</u> Include a discussion of any deviations from as-built and an evaluation of the significance of these deviations and whether they are indicative of a stabilizing or destabilizing situation.

The streambanks are stabilized throughout the most part of South Ellerbee Creek. The few problem areas that were noted during the 1st quarterly monitoring period are in the chart below and will be repaired before these stream segments are considered successful.

Date	3/22/06	3/22/06	3/22/06
Inspected	PP #10 Upstream	PP #12 Upstream	PP #15 Downstream
	Sta. 5+400-L- LT.	Sta. 6+000-L- LT.	Sta. 1+240 –CONAB- LT.
Structure	Cross Vane		
Type			
Is water			
piping			
through or			
around			
structure?			
Head cut or			
down cut			
present?			
Bank or scour	Yes	Yes	
erosion			
present?			
Other	Repair failed	Old culvert footing	Sheet pilings will be
problems	cross vane and	in stream will be	removed from stream
noted?	scour around	altered so that it is	relocation.
	sewer line.	not directing water	
		flow into left bank.	

NOTE: Attach separate narrative sheets to each monitoring report describing/discussing the overall monitoring results. Include the identification of specific problem areas/channel failures, estimated cause and proposed/required remedial action. This should include a brief discussion of any parameter that has changed significantly from as-built.

PP #1 Upstream (STA. 4+160-L- LT.)

PP #1 Downstream (STA. 4+160-L- LT.)

PP #2 Upstream (STA. 4+160-L- LT.)

PP #2 Downstream (STA. 4+160-L- LT.)

PP #3 Upstream (STA. 4+160-L- LT.) February & March 2006

PP #3 Downstream (STA. 4+300-L- LT.)

PP #4 Upstream (STA. 4+440-L- LT.)

PP #4 Downstream (STA. 4+440-L- LT.)

PP #5 Upstream (STA. 4+440-L- LT.)

PP #5 Downstream (STA. 4+440-L- LT.)

PP #6 Upstream (STA. 4+620-L- LT.) February & March 2006

PP #6 Upstream (STA. 4+620-L- LT.)

PP #6 Downstream (STA. 4+620-L- LT.)

PP #7 Upstream (STA. 4+800-L- LT.)

PP #7 Downstream (STA. 4+800-L- LT.)

PP #8 Upstream (STA. 4+800-L- LT.)

February & March 2006

PP #9 Upstream (STA. 5+400-L- LT.)

PP #10 Upstream (STA. 5+400-L- LT.)

PP #10 Downstream (STA. 5+400-L- LT.)

PP #11 Upstream (STA. 6+000-L- LT.)

PP #11 Downstream (STA. 6+000-L- LT.)

PP #12 Upstream (STA. 6+000-L- LT.)

PP #12 Downstream (STA. 6+000-L- LT.)

PP #13 Upstream (STA. 1+020 –CONAB- LT.) February & March 2006

PP #13 Downstream (STA. 1+020 –CONAB- LT.)

PP #14Upstream (STA. 1+020 -CONAB- LT.)

PP #14 Downstream (STA. 1+020 –CONAB- LT.)

PP #15 Downstream (STA. 1+240 –CONAB- LT.)